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In this paper a dynamic analysis of sandwich plate with a certain periodic microstructure
is considered. The initial system of governing equations is derived basing on the classic
broken line hypothesis. As a result of transformations one can obtain a system of three
differential equations of motion with periodic, highly oscillating and non-continuous co-
efficients. In order to derive a system of equations with constant coefficients tolerance
averaging technique is applied. Eventually, in the calculation example a free vibration
analysis of certain periodic plate strip is performed with the use of both the derived
model and a FEM model. It can be observed that the consistency of obtained results is
highly dependent on the calculation assumptions.
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1. Introduction

Sandwich structures are certain specific composites made of three layers - outer
layers, which are made of materials characterized by high mechanical properties,
so as they can be treated as the main bearing part of the structure, and the inner
layer, so called core. The core is usually made of light-weight materials, which have
two functions: it increases the stiffness of the whole structure, by increasing its
thickness, and stands for the thermal and acoustic isolation. Due to the fact, that
every each layer of such structure is being modeled and optimized to work best in
certain specific conditions, sandwich plates can be characterized by physical and
mechanical properties, which are unreachable for ’classic’, homogeneous materials.
Hence, they have many applications in modern engineering.

There are many different approaches to modeling of sandwich structures. First
of all, sandwich structures can be treated as a system of two outer layers modeled
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as beams, membrane systems, plates or even shells, connected with each other with
a certain type of elastic material, such as: one- or multiparametric Winkler’s type
material, Murakami’s type material or Pasternak’s type material, among others (cf.
Chonan [1], Oniszczuk [2], Szcześniak [3,4], Navarro [5]). Secondly, the whole struc-
ture can be treated as a single multilayered plate or shell and then analyzed with
the use of complicated deformation field hypothesis, such as: broken line hypothe-
sis, Zig-Zag theory or Reissner-Mindlin hypothesis (cf. Magnucki and Ostwald [6],
Magnucka-Blandzi et al. [7], Carrera and Brischetto [8]). Eventually, researchers
use a vast variety of numerical methods to analyze sandwich structures, such as the
finite difference method or the finite element method, which is considered to be the
most versatile method of analysis of any type of structures recently.

In this work let us focus on the modeling of vibrations of sandwich plates based
on the broken line hypothesis. The considered sandwich plate is assumed to be char-
acterized by certain periodic microstructure, such as: periodically varying thickness
and/or material properties of the outer layers and/or the core. As a result of this
assumption, the initial system of governing equations contains periodic, highly os-
cillating and non-continuous coefficients. In order to obtain a system of equations
with constant coefficients, which is convenient to solve, the tolerance averaging
technique is applied. In literature one can find a detailed description of this tech-
nique, cf. Woźniak and Wierzbicki [9], Woźniak et al. [10], Woźniak [11], along
with many applications, for example in thermomechanics of laminates, cf. Pazera
and Jȩdrysiak [12], dynamics of medium thickness plates cf. Jȩdrysiak [13], Baron
[14,15] or dynamics and stability of cylindrical shells, cf. Tomczyk and Szczerba [16].
The author also used this technique in his previous papers concerning vibrations of
three-layered structures, cf. Marczak and Jȩdrysiak [17].

Basing on the derived model the free vibration analysis of periodic plate strip
will be performed. Eventually, the obtained results will be verified by FEM model
and the consistency of results will be discussed.

2. Modeling foundations

Let us introduce 0x 1x 2x 3 as an orthogonal Cartesian coordinate system, where x ≡
(x1, x2), and t as a time coordinate. The considered three-layered plate is assumed
to be rectangular and to have spans L1 and L2 along x 1- and x 2-axis directions, re-
spectively. Hence, its midplane can be denoted as: Π ≡ [0, L1]×[0, L2]. Let us focus
on certain specific type of sandwich structures, which are symmetric to its midplane
and made of isotropic materials. By introducing hc(x) and hf (x) as thicknesses of
the core and the outer layers, respectively, the whole region occupied by the plate
can be denoted as: Ω ≡ {(x, x3) : −hc(x)/2−hf (x) ≤ x3 ≤ hc(x)/2+hf (x),x ∈ Π},
cf. Fig. 1. Since the whole structure is assumed to be made of isotropic materi-
als, let us introduce Ef (x), νf (x), Gf (x) and ρf (x) as Young’s modulus, Poisson’s
ratio, shear modulus and mass density of the outer layers, respectively, and Ec(x),
νc(x), Gc(x) and ρc(x) as Young’s modulus, Poisson’s ratio, shear modulus and
mass density of the core, respectively.

It should be emphasized, that the three-layered structure under consideration
is characterized by a certain periodic microstructure, connected with periodically
varying thicknesses and/or material properties of the layers. Basing on this mi-
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crostructure, one can distinguish a small, repeatable part called periodicity cell ∆.
Let us assume, that the basic periodicity cell takes a rectangular shape and has
dimensions l1 and l2 along x 1- and x 2-axis directions, respectively. The diameter
of the considered periodicity cell will be referred to as microstructure parameter l.
In all subsequent formulas let us denote a spatial derivative as ∂i ≡ ∂

∂xi
, i = 1,2,3,

and a time derivative as an overdot.

Figure 1 Sandwich three-layered plate with a certain periodic microstructure

The modeling of sandwich structure is based on the well-known broken line hypoth-
esis, cf. Magnucki and Ostwald [6], according to which the displacements along
specific direction can be described as follows:

u1(x, x3, t) =

 −x3∂1w(x, t)− hc(x)ψ1(x, t)
−x3∂1w(x, t) + 2x3ψ1(x, t)
−x3∂1w(x, t) + hc(x)ψ1(x, t)

for
for
for

x3 ∈ H−
f

x3 ∈ Hc

x3 ∈ H+
f

u2(x, x3, t) =

 −x3∂2w(x, t)− hc(x)ψ2(x, t)
−x3∂2w(x, t) + 2x3ψ2(x, t)
−x3∂2w(x, t) + hc(x)ψ2(x, t)

for
for
for

x3 ∈ H−
f

x3 ∈ Hc

x3 ∈ H+
f

u3(x, x3, t) = w(x, t)
H−

f ≡ {(x, x3) : −hc(x)/2− hf (x) ≤ x3 < −hc(x)/2,x ∈ Π}
Hc ≡ {(x, x3) : −hc(x)/2 ≤ x3 ≤ hc(x)/2,x ∈ Π}
H+

f ≡ {(x, x3) : hc(x)/2 < x3 ≤ hc(x)/2 + hf (x),x ∈ Π}

(1)

where ψα, α = 1,2 are certain dimensionless displacements along xα-axis direc-
tion, cf. Fig. 2. It should be emphasized, that according to assumptions (1)
displacements along x3-axis direction u3(x,x3,t) are equal to the displacements of
the midplane of the structure w(x,t).

Basing on the presented deformation hypothesis (1), one can calculate proper
strain tensor elements εij , i,j = 1,2,3. By assuming stress-strain relation according
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to Hooke’s law it is possible to obtain initial governing equations in the form of
equations of equilibrium:

Cαβγδ∂αβγδw(x, t)− Ĉαβγδ∂αβγψδ(x, t)−A11(ρf , ρc)∂ααẅ(x, t)

+A12(ρf , ρc)∂αψ̈α(x, t) +B1ẅ(x, t) = p(x, t)/[hc(x)]
3

Cαβγδ∂αβγw(x, t)− Ĉαβγδ∂αγψβ(x, t)−A11(ρf , ρc)∂δẅ(x, t)

+A12(ρf , ρc)ψ̈δ(x, t) +B2ψδ(x, t) = 0

(2)

where α, β, γ, δ = 1, 2, p(x,t) is an external loading along x 3-axis direction and:

C1111 = C2222 = A11(Ef , Ec), C1122 = C2211 = A11(Efvf , Ecvc)
C1212 = C2121 = C1221 = C2112 = A11(Gf , Gc),

Ĉ1111 = Ĉ2222 = A12(Ef , Ec), Ĉ1122 = Ĉ2211 = A12(Efvf , Ecvc)

Ĉ1212 = Ĉ2121 = Ĉ1221 = Ĉ2112 = A12(Gf , Gc)
B1 = (2ρfhf + ρchc)/h

3
c , B2 = 2Gc/h

2
c

A11(Y,Z) = Y a1 +
1
12Z, A12(Y, Z) = Y a2 +

1
6Z

a1 = ( 23X
2 +X + 1

2 )X, a2 = X2 +X, X = hf/hc

(3)

Figure 2 Assumed deflection along x1-axis direction

Let us remind, that all denotations in (3) describing thickness and material proper-
ties of the certain layer of the structure can be a function of coordinate x. Hence, as
a result we arrive at a system of three equations of equilibrium (there is no summa-
tion over δ in (2)2) with periodic, highly oscillating and non-continuous coefficients,
which is difficult to solve using well-known mathematical methods. In order to
obtain a system of equations with constant coefficients, the tolerance averaging
technique will be used.

It should be emphasized, that the correctness of the shown broken line hypothesis
in the analysis of sandwich plates has been already proved in the literature, for
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example in: Magnucki and Ostwald [6], where the consistency of results of stability
analysis between the broken line hypothesis, the FEM analysis and the experimental
results was presented. Moreover, the Author also used the broken line hypothesis
in the vibrations analysis of sandwich plates without periodic microstructure, cf.
[18], also obtaining a satisfactory consistency of results with FEM analysis.

3. Basics of the Tolerance Averaging Technique

The Tolerance Averaging Technique was developed by Woźniak and base on several
basic concepts such as: a tolerance parameter δ, a basic periodicity cell ∆(x),
a tolerance periodic function TP k

δ (∆), a slowly varying function SV k
δ (∆), a highly

oscillating function HOk
δ (∆) or a fluctuation shape function FSk

δ (∆). In literature
one can find many publications, where those basic concepts are described in details,
cf. Woźniak and Wierzbicki [9], Woźniak et al. [10], Woźniak [11], hence let us
remind only several most important assumptions of modeling.

The modeling process is based on an averaging operation, which for 2D issue
can be described with the use of following formula:

<
∂k

∂xki
f > (x) =

1

|∆|

∫
∆(x)

f̃ (k)(x, y)dy, k = 0, 1, 2... (4)

where ∆(x) ≡ x + ∆ is a basic periodicity cell with a center at x, and f̃ (k)(x, y)
is a periodic approximation of k th derivative of function f (x). As a result of the
averaging operation of certain function f (x) one obtain a constant, averaged value
of this function.

There are two main assumptions in the tolerance averaging technique. The first
of them is a heuristic micro-macro decomposition, according to which certain field
can be presented as a sum of the averaged macrofield of certain physical property,
being a slowly varying function, and a sum of products of certain assumed fluc-
tuation shape functions and fluctuation amplitudes, which are also slowly varying
functions:

w(·, t) =W (·, t) + gA(·)QA(·, t), A = 1, 2, ..., N,
W (·, t) ∈ SV k

δ (∆), QA(·, t) ∈ SV k
δ (∆), gA(·) ∈ FSk

δ (∆)
(5)

The second assumption is a set of tolerance averaging approximations, according
to which certain terms can be treated as equal with a respect to the tolerance
parameter δ. Several of such approximations are presented below:

< φ > (x) =< φ̃ > (x) +O(δ),
< φF > (x) =< φ > (x)F (x) +O(δ),
< φ∂α (gF ) > (x) =< φ∂αg > (x)F (x) +O(δ),
< g∂α(φΦ) > (x) = − < φΦ∂αg > (x) +O(δ),
x ∈ Π, α = 1, 2, 0 < δ << 1,
φ,Φ ∈ TP k

δ (∆), F ∈ SV k
δ (∆), g ∈ FSk

δ (∆)

(6)

4. Tolerance modeling of periodic sandwich plate

The whole modeling procedure consists of several transformations of initial govern-
ing equations of considered sandwich plate (2). In the first step, the whole system of
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equations is averaged with the use of the averaging operator (4). Then, micro-macro
decomposition of displacement fields is applied in the following form:

w(x, t) =W (x, t) + gA(x)QA(x, t),
ψα(x, t) = Θα(x, t) + hBα (x)Φ

B
α (x, t)

(7)

where:
– W (x,t) and Θα(x,t) are macroscale displacements, W (x,t), Θα(x,t)∈ SV 4

δ (∆),
α = 1,2, QA(x,t) and Φα

B(x,t) are fluctuation amplitudes,
–QA(x, t),ΦB

α (x, t) ∈ SV 4
δ (∆), A = 1,2. . . ,N, B = 1,2,. . . ,M, and gA(x) and hα

B(x)
are assumed fluctuation shape functions,
– gA(x, t), hBα (x, t) ∈ FS4

δ (∆), which satisfy the following normalizing conditions:
< B1g

A >= 0 and < A12(ρf , ρc)h
B
α >= 0.

In the next step the orthogonalization condition of the obtained equations and
assumed fluctuation-shape functions is formulated and eventually, several transfor-
mations with the use of the tolerance averaging approximations (6) are performed
in order to obtain a convenient form of equations. As a result of the modeling
procedure, one can obtain the system of governing equations of the tolerance model
(TM) of sandwich three-layered plate in the form:

< Cαβγδ > ∂αβγδW+ < Cαβγδ∂αβγδg
A > QA− < Ĉαβγδ > ∂αβγΘδ

− < Ĉαβγδ∂αβγh
B
δ > ΦB

δ − < A11(ρf , ρc) > ∂ααẄ

− < A11(ρf , ρc)∂ααg
A > Q̈A+ < A12(ρf , ρc) > ∂αΘ̈α

+ < A12(ρf , ρc)∂αh
B
α > Φ̈B

α+ < B1 > Ẅ =< p/h3c >

< Cαβγδ > ∂αβγW+ < Cαβγδ∂αβγg
A > QA− < Ĉαβγδ > ∂αγΘβ

− < Ĉαβγδ∂αγh
B
β > ΦB

β − < A11(ρf , ρc) > ∂δẄ− < A11(ρf , ρc)∂δg
A > Q̈A

+ < A12(ρf , ρc) > Θ̈δ+ < B2 > Θδ+ < B2h
B
δ > ΦB

δ = 0

(8)

< Cαβγδg
K > ∂αβγδW+ < Cαβγδ∂αβγδg

AgK > QA− < Ĉαβγδg
K > ∂αβγΘδ

− < Ĉαβγδ∂αβγh
B
δ g

K > ΦB
δ − < A11(ρf , ρc)g

K > ∂ααẄ

− < A11(ρf , ρc)∂ααg
AgK > Q̈A+ < A12(ρf , ρc)g

K > ∂αΘ̈α

+ < A12(ρf , ρc)∂αh
B
α g

K > Φ̈B
α+ < B1g

AgK > Q̈A =< pgK/h3c >

< Cαβγδh
L
δ > ∂αβγW+ < Cαβγδ∂αβγg

AhLδ > QA− < Ĉαβγδh
L
δ > ∂αγΘβ

− < Ĉαβγδ∂αγh
B
β h

L
δ > ΦB

β − < A11(ρf , ρc)h
L
δ > ∂δẄ

− < A11(ρf , ρc)∂δg
AhLδ > Q̈A+ < A12(ρf , ρc)h

B
δ h

L
δ > Φ̈B

δ + < B2h
L
δ > Θδ

+ < B2h
B
δ h

L
δ > ΦB

δ = 0

A,K = 1, 2, ..., N, B, L = 1, 2, ...,M

The system of equations (8) is a system of differential equations with constant co-
efficients, which describes the vibrations of the three-layered sandwich plate with



On the Modeling of Periodic Sandwich Structures with the Use ... 767

periodic microstructure. However, unlike for example the asymptotic homogeniza-
tion method, it still allows us to investigate the effect of the microstructure on its
macroscopic behavior. System of equations (8) consists of N + 2M + 3 equa-
tions, depending on the number of assumed fluctuation-shape functions. It must be
emphasized, that in equations (8)2,4 there is no summation over δ.

System of equations (8) should be followed by four boundary conditions for
deflection W (x,t) and three boundary conditions for every each deflection Θ1(x,t)
and Θ2(x,t). One can notice, that there is no need to formulate any boundary
conditions for any fluctuation amplitude function QA(x,t), Φ1

B(x,t) and Φ2
B(x,t).

Additionally, two initial conditions should be given for every each of the unknown
functions.

5. Calculation example – free vibration analysis

In this section free vibration analysis of plate strip with a certain periodic mi-
crostructure is presented and discussed. Let us consider a sandwich structure, with
dimensions L1 and L2 along x 1- and x 2-axis, respectively, simply supported on edges
x1 = 0, x1 = L1, cf. Fig. 3. Material properties and detailed information about
dimensions of the structure and the periodicity cell are presented below.

E1 = 210GPa, E2 = 105GPa, Ec = 5GPa,
ν1 = 0.3, ν2 = 0.3, νc = 0.3,
G1 = 80.8GPa, G2 = 40.4GPa, Gc = 1.9GPa,
ρ1 = 7850 kg/m3, ρ2 = 785 kg/m3, ρc = 500 kg/m3,
L1 = 1200mm, L2 = 100mm, l = l1 = 30mm,
hf = 5mm, hc = 50mm.

(9)

The considered structure can be treated as a one dimensional issue. In such case,
governing equations of the tolerance model can be rewritten into a simplified form,
which depends on quantity and quality of assumed fluctuation shape functions. Let
us formulate two different sets of assumptions.

� Case I:

In this case, let us assume only one fluctuation shape function for displacement
w(x,t) and only one fluctuation shape function for displacement ψ1(x,t):

g ≡ g(y1) = g1(y1) = l4 cos(2πy1/l) + c1, Q = Q1(x1, t)
h ≡ h(y1) = h11(y1) = l3 sin(2πy1/l) + c2, Φ = Φ1

1(x1, t)
(10)

One can notice, that function g is an even function, while function h – an
odd function. Constant c1 and c2 can be derived from normalizing conditions
< B1g >= 0 and < A12(ρf , ρc)h >= 0. As a result of all above assumptions,
governing equations of the tolerance model of sandwich plate strip can be
simplified into the form:
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Figure 3 A sketch of considered sandwich plate strip with a details of a basic periodicity cell

< A11(Ef , Ec) > ∂1111W+ < A11(Ef , Ec)∂1111g > Q

− < A12(Ef , Ec) > ∂111Θ− < A12(Ef , Ec)∂111h > Φ

− < A11(ρf , ρc) > ∂11Ẅ− < A11(ρf , ρc)∂11g > Q̈+ < A12(ρf , ρc) > ∂1Θ̈

+ < A12(ρf , ρc)∂1h > Φ̈+ < B1 > Ẅ = 0

< A11(Ef , Ec) > ∂111W− < A12(Ef , Ec) > ∂11Θ− < A11(ρf , ρc) > ∂1Ẅ

+ < A12(ρf , ρc) > Θ̈+ < B2 > Θ = 0

(11)

< A11(Ef , Ec)g > ∂1111W+ < A11(Ef , Ec)g∂1111g > Q

− < A12(Ef , Ec)g > ∂111Θ− < A12(Ef , Ec)g∂111h > Φ

− < A11(ρf , ρc)g > ∂11Ẅ− < A11(ρf , ρc)g∂11g > Q̈

+ < A12(ρf , ρc)g > ∂1Θ̈+ < A12(ρf , ρc)g∂1h > Φ̈+ < B1gg > Q̈ = 0

< A11(Ef , Ec)h∂111g > Q− < A12(Ef , Ec)h∂11h > Φ

− < A11(ρf , ρc)h∂1g > Q̈+ < A12(ρf , ρc)hh > Φ̈+ < B2hh > Φ = 0
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� Case II:

In this case, let us assume that displacements of sandwich plate strip along
x 3-axis directions are sufficiently well approximated only by macrodeflection
W (x 1,t), hence, there is no need to introduce any fluctuation shape function
gA(y1). As a result only one fluctuation shape function for displacement
ψ1(x,t) is assumed in the form of an odd function:

h ≡ h(y1) = h11(y1) = l3 sin(2πy1/l) + c2, Φ = Φ1
1(x1, t) (12)

where constant c2 can be derived from normalizing condition:

< A12(ρf , ρc)h >= 0

As a result of such assumptions, governing equations of the tolerance model
of sandwich plate strip can be simplified into the form:

< A11(Ef , Ec) > ∂1111W− < A12(Ef , Ec) > ∂111Θ

− < A12(Ef , Ec)∂111h > Φ− < A11(ρf , ρc) > ∂11Ẅ

+ < A12(ρf , ρc) > ∂1Θ̈+ < A12(ρf , ρc)∂1h > Φ̈+ < B1 > Ẅ = 0

(13)

< A11(Ef , Ec) > ∂111W− < A12(Ef , Ec) > ∂11Θ

− < A11(ρf , ρc) > ∂1Ẅ+ < A12(ρf , ρc) > Θ̈+ < B2 > Θ = 0

− < A12(Ef , Ec)h∂11h > Φ+ < A12(ρf , ρc)hh > Φ̈+ < B2hh > Φ = 0

For both of the above cases solutions to systems of equations (11) and (13) are
assumed in the forms, which satisfy boundary conditions:

W (x1, t) = AW sin(nπx1/L1) sin(ωt)
Q(x1, t) = AQ sin(nπx1/L1) sin(ωt)
Θ(x1, t) = AΘ cos(nπx1/L1) sin(ωt)
Φ(x1, t) = AΦ sin(nπx1/L1) sin(ωt)

(14)

where AW , AQ, AΘ, AΦ are displacement amplitudes, n is a wave number and ω
is a frequency of vibrations. By substituting solutions (14) into both system of
equations (11) and (13) one can derive two systems of algebraic equations, which
can be easily solved in order to find free vibration frequencies of the considered
structure.

Apart from the tolerance model of sandwich plate, the FEM model of the con-
sidered structure was developed. The whole structure was modelled as 3D structure
with the use of eight-node brick elements with reduced integration (C3D8R). Calcu-
lations were performed using ABAQUS calculation environment and can be treated
as a benchmark for results obtained within the tolerance model.

The obtained free vibration frequencies of first 10 modes for all the considered
models are presented in Table 1 and on Fig. 4.
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By analyzing data in Table 1 and in Fig. 4. one can observe a significant differ-
ence in results derived from Case I and Case II. Free vibration frequencies derived
from tolerance model are up to 9% higher, when micro-macro decomposition of
vertical displacements is taken into consideration. Consequently, the differences be-
tween the results of the tolerance models and FEM model are also highly dependent
on the assumed fluctuation shape functions. The relative error between TM – Case
I and FEM can reach up to 13% for the lowest free vibration frequencies, while the
relative error between TM – Case II and FEM do not exceed 3% (apart from the first
mode of vibrations, where it is slightly higher than 4%). Hence, it can be stated,
that choosing a proper set of fluctuation shape functions during a modeling process
is a crucial part of modeling with the use of the tolerance averaging technique.

Table 1 Comparison of free vibration frequencies obtained within all considered models

Mode Free vibration frequencies [Hz]
TM – Case I TM – Case II FEM Model

1 160,0 147,8 141,7
2 582,6 537,7 522,2
3 1158,0 1067,5 1051,2
4 1802,5 1659,9 1653,6
5 2471,9 2274,3 2285,3
6 3146,7 2893,1 2924,3
7 3818,8 3509,4 3560,9
8 4485,8 4121,0 4190,5
9 5147,0 4727,6 4811,4
10 5802,7 5329,7 5423,1

Figure 4 Comparison of free vibration frequencies obtained within all considered models
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6. Conclusions

In this article the vibration analysis of periodic three-layered sandwich structure
has been performed. Basing on the classic broken line hypothesis the initial gov-
erning equations of motion of considered structure were derived. The solution to
such system of equations is difficult to obtain, as its coefficients are periodic, highly
oscillating and non-continuous functions. The greatest finding of this article is the
derivation of the tolerance model of the periodic sandwich structure, which con-
sists of system of equations with constant coefficients. Such systems of governing
equations are not only simple to solve but also allows us to investigate the mi-
croscale fluctuations connected with the periodic microstructure. Let us mention,
that such analysis cannot be performed with the use of other techniques of analysis
microperiodic structures, like for example asymptotic homogenization method.

By analyzing the results of free vibration frequencies derived from all presented
models one can conclude, that the derived tolerance model of periodic sandwich
plate can be perceived as a convenient tool for dynamic analysis of microheteroge-
neous structures. Unfortunately, the derived results are highly dependent on the
correctness of arbitrarily assumed fluctuation shape functions, which stands for an
unquestionable drawback of this model. One can observe, that, contrary to Case I,
the results of Case II where the fluctuations of vertical displacements were omitted
are much closer to benchmark results derived from FEM analysis. It is connected
with the specific dimensions of the considered structure, where the microstructure
parameter l is of an order of the thickness of the plate. In such case, in literature one
can find an alternative tolerance modeling procedure, which leads to more universal
form of averaged governing equations, cf. Baron [14,15]. However, by analyzing the
results presented in this article, it can be stated that satisfactory results in such
case can be also obtained by following a classic tolerance modeling procedure dedi-
cated to structures, which thickness is much smaller than microstructure parameter
l, by omitting certain fluctuation amplitudes, in our case - fluctuations of vertical
displacements.

Moreover, one can observe, that the relative errors between the results of av-
eraged models and FEM analysis are increasing for higher modes of vibrations.
It can be caused by the fact, that for such modes of vibrations the assumption
W (x, t),Θα(x, t) ∈ SV 4

δ (∆), α = 1,2, becomes much more difficult to fulfill. Con-
sequently, the tolerance parameter assumed for every each of calculation cases in-
creases, while the accuracy of results decreases. Moreover, also the quality of chosen
fluctuation shape functions has an influence on the obtained results. In order to
avoid producing faulty results, one should consider a possible use of an exact fluc-
tuation shape functions derived from an eigenvalue analysis of a single periodicity
cell. Even if such derived function is not convenient in calculations, still, it can give
a hint of how a properly assumed fluctuation shape function should look like.

It should be emphasized, that the derived model can be considered correct only
for structures, which are symmetric to their midplane. In case of analysis of struc-
ture, which do not fulfill such condition, neither the presented model, nor classic
broken line hypothesis is able to describe properly its dynamic behavior.
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Moreover, in modern engineering one can find many examples of sandwich structures
made of materials, which cannot be considered isotropic. As a result, several further
adjustments should be made in order to obtain a complex model of considered plates.
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[12] Pazera, E. and Jȩdrysiak, J.: Effect of microstructure in thermoelasticity
problems of functionally graded laminates, Compos Struct, 202, 296-303, DOI:
10.1016/j.compstruct.2018.01.082, 2018.
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